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link has size 3 or 4, i.e., every (n — 2)-face is contained in 3 or 4 n-faces.
Such simplicial complexes with short (i.e., of length 3 or 4) links are
completely classified by their characteristic partition. We consider also
embedding into (the skeletons of) h ypercubes of the sleletons of simplicial
and cubical complexes.

1. Introduction
An n-dimensional simplicial complex (or simplicial n-complex) is a
collection S of finite nonempty sets, suc h that:

(i) if S is an element of S, then so is every nonempty subset of S;

(ii) If S, 8" € S, then SN S’ € S;

(iii) all maximal (for inclusion) elements of S have cardinality n + 1.

Given a simplicial complex K of dimension n, every (k+1)-subset of it defines
a face of dimension k. In the sequel we identify faces with their set of vertices.
A simplicial complex K is called a pseudomanifold if every (n—1)-face belongs
to one or tw on-faces. The boundary is the set of (n — 1)-faces contained in
exactly one n-face. If the boundary of K is empty (i.e., every (n — 1)-face is the
in tersection of exactly tw on-faces), then K is called a closed pseudomanifold.

For ev eryn-face F’, containing an (n — 2)-face F', there exists unique edge e,
such that F = F'Ue. The link of an (n—2)-face F is the 1-complex consisting
of all edges e as above, where F’ run through all n-simplexes, containing F'. If
the number of such faces F” is at most 5 or if K is a manifold, then the link
consists of a unique cycle. The length of this cycle will be denoted by I(F').

Every compact manifold M can be represented as a closed simplicial complex,
if one chooses a triangulation of M.

Definition 1.1: A closed simplicial complex K is called of type L, if for any
(n — 2)-face F of K, one has I(F') € L.

We will be concerned below, especially, with the case L = {3, 4}.

Some examples:

(i) the boundary of the (n + 1)-simplex (respectively, the boundary of the
(n + 1)-hyperoctahedron) ameamples of simplicial complexes of type {3,4},
where, moreover, L = {3} (respectively, L = {4});

(ii) the only 2-dimensional {3,4}-simplicial complexes are: dual T riangular
Prism, Tetrahedron and Octahedron.
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T ak e the boundary of then + 1)-hyperoctahedron, which is a simplicial n-
complex, and write its set of vertices as {1,2,..., n+1,1,2" ..., (n+1)'}. This

(n + 1)-hyperoctahedron has the following 27! n-faces:
{x1,.. Ty} withz; =iord for 1 <i<n+1.

Definition 1.2: Let P = (Py,...,P;) be a partition of V,,41 = {1,2,...,n+1}.
Define the simplicial complex K(P) as follows:

(i) it has n + 1 + ¢ vertices (1,2,...,n+ 1, P,..., P),

(ii) every n-face Fy = {x1,...2p41} is mapped onto Fy = {y1,...,ynt1},
candidate for an n-face of K(P), where y; = ¢ if v; =4, and y; = P; if z; = ¢,
i € Pj.

Below, K,, denotes the complete graph on m vertices, C,, denotes the cycle
on m vertices. Denote by K,, — C}, the complement in K,, of the cycle Cp;
denote by K,, — hK5 the complete graph on m vertices with h disjoint edges
deleted.

Any simplicial or cubical (see Section 3) complex of type {3,4} is realizable
as a manifold, since the neighborhood of every point is homeomorphic to the
sphere.

Given a complex K, its sk eletonG(K) is the graph with vertices of £ and
with two vertices being adjacent if they form an 1-face of K.

Given a graph G, its path-metric (denoted by dg(i,j)) bet ween two vertices
1, 7 is the length of a shortest path betw een them. The graph G is said to be
embeddable up to scale \ into a h ypercubeif there exist a mapping ¢
of G into {0,1}" with ||¢(i) — ¢(4)||zr = Ada(i,j). Forthe details on such
embeddability, see the book [DeLa97].

For example, Proposition 7.4.3 of [DeLa97] gives that K,,+1 — K2 and
Koy — mKs embed in the 2a,,-hypercube with a scale A = a,,, where
Ay = (m"/L;fl) for m even anda,, = 2((m"l;§/2) for m odd. Clearly, any subgraph
G of Ks,, — mK,, con taining K, 11 — Ko, also admitthe above embedding,
since any subgraph of diameter two graph is an isometric subgraph. In general,
if G is an isometric subgraph of a hypercube, then it is an induced subgraph,
but this implication is strict.

A graph is said to be h ypermetricif its path-metric satisfies the inequality

> bibjdgli,5) <0
1<i<j<n
for any vector b € Z™ with ). b; = 1. In the special case, when b is a permu-

tation of (1,1,1,-1,-1,0,..., 0), the above inequality is called 5-gonal. The
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validity of hypermetric inequalities is necessary for embeddability but not suffi-
cient: an example of a hypermetric, but not embeddable graph (amongst those,
given in Chapter 17 of [DeLa97]) is K7 — Cs.

2. Simplicial complexes of type {3,4}

In this section, w eclassify the simplicial complexes of type {3,4} in terms of
partitions. Let K be a simplicial complex of type {3,4} andlet A = {1,...,n+1}
be an n-face of this complex. Denote by F; ={1,...,i—1Li+1,....n+ 1} =
Vg1 — {i} an (n — 1)-face of A. F; is contained in another n-face, which w e
write as A; = {1,...,i—1,7,i+1,...,n+ 1}. Denote by F; ; = Viy1 — {i,5}
the (n—2)-faces of K. One has I(F; ;) = 3 if and only if i’ = j'. Now, [(F} ;) =4
if and only if i’ # j' and (i, j') is an edge.

Define a graph on the set V11 by making ¢ and j adjacent if I(F; ;) = 3.
By what we already know about i’ and j', one obtains that this graph is of the
form Kp, + -+ Kp, (where K 4 denotes the complete graph on the vertex-set
A) and so, one gets a characteristic partition of V1, which w ewrite as
P={P,....P).

THEOREM 2.1: If A = {1,2,...,n+ 1} is a simplex of a simplicial complex K
of type{3,4}, then K=K(P) with P being the characteristic partition of A.
Moreover, all simplexes of K ha vethe same characteristic partition, up to

permutations.

Proof: According to the above notation, we define the vertices ¢’ and simplexes
A;, such that AN A; = F;. The vertex-set of the complex K contains v ertices
{1,...,n+1,1,...,(n+1)'}; we will show that it contains no others.

Let us find the values of the link numbers [(F') for an adjacent simplex, say
Aq of A.

Taken (n — 2)-face F in {1',2,...,n+ 1}. If 1’ ¢ F, then one has an
(n — 2)-face of A and so we already know [(F).

Let us write Flas Fj ; = {1',2,...,n+ 1} — {7, j}. The face F} ; is contained
in the simplexes A, A; and A;. If [(F; ;) = 3, then i’ = j'. If [(F}; ;) = 4, then
F; ; is also contained in F; ; U {i’, j'}, which is a simplex of K.

The face F}; is contained in the (n — 1)-faces {1',2,...,n + 1} — {i} and
{1,2,...,n+ 1} = {j}. According to I(F1;) = 3 or 4, the face F} ; is contained
in either A; (and ¢’ = 1), or in {1',2,...,4 —1,7,i+1,...,n + 1}. The same
holds for Fj ;.

We deal with all cases:
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o If [(F; ;) = 3, one has i’ = j'.
- I I(F1 ;) = 4 and [(Fy j) = 4, then F]; is contained in

{12, .n+1}, {1.2,...i-1,i'i+1,...,n+1} and
{1,2,....5—-1,7,5+1,...,n+1}.

By equality 7' = j', one has I(F} ;) = 3.
- If Z(Fl,i) = 3’ then 1/ = @" so, 1 = j’ and Z(Fl’]) = 3. The face Fi,,j
is contained in {1',2,...,n + 1} = Fi'_,j u{i,j},

(1.2,....i-1L1i+1,...,n+1} = F ;U{l,j}

and {1',2,...,7 - 1,1, +1,....,n+ 1} = F/ ;U {i,1}. By equality
i' = j', one has I(F} ;) = 3.
o If I(F; ;) =4, one has i’ # j'.
- If I(F1 ;) = 4 and [(F} ;) = 4, then F} ; is contained in

{1172,7n+1}:FlI]U{27.]}7
(12,0~ 1L,i%i+1,...,n+1} = F,,U{i’,j} and
{1172,7]71,]’7]-1_1,7n+1}:FlI]U{Z,]I}

Since the length of a link should be 3 or 4 and since we have already 4
vertices, one gets that F} ; is con tained inFj ;U{i’, j'} and I(F} ;) =
4.

- If [(F1;) = 3, then 1’ = ¢' and so 1’ # j', which implies [(F} ;) =
4. The face F; is contained in {1,2,...,n + 1} = F/, U {i,j},
{UV,...i=1L1di+1,...,n+1} = F;U{l,j} and

{11727"'7]._17.jl7j+17"'7n+1} :Fll,]U{Z7J’}

So, by the same argument, one gets that FZ’] contained in

Fiu{l,j'} and I(F} ;) = 4.
One obtains I(F} ;) = I(F} ;). Therefore, A and Ay ha e the same characteristic
partition, up to a permutation. Moreover, one sees that the adjacent simplexes
to Aj are contained in the vertex-set V = {1,...,n+1,1',... (n+1)'}. This
implies that the vertex-set of K is exactly V. On the other hand, the c harac-
teristic partition of A defines uniquely the complex K. Since the complex C(P)
has the same characteristic partition, one obtains the equality K = KC(P). ]
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Given a complex K, its automorphism group Aut(K) is defined as the group
of permutations of its vertices, preserving the set of faces.
Call a complex isohedral if Aut(K) is transitive on its n-faces.

COROLLARY 2.2: (i) Given tw opartitions P and P' of V, 11, one has K(P)
isomorphic to K(P') if and only if P' is obtained from P by a permutation of
Vi1

(ii) Every simplicial complex of type {3,4} is isohedral.

Proof: (i) By Theorem 2.1, all simplexes of a simplicial complex of type {3, 4}
have the same characteristic partition. So, if tw o complexes of ype {3,4} are
isomorphic, their corresponding partitions are isomorphic too. On the other
hand, tw oisomorphic partitions define the same simplicial complex of type
{3,4}.

(ii) By Theorem 2.1, one can assume that K is of the form K(P). Take
another n-face A" = {vq,...,v,41} of K(P); its partition type is the same as
of {1,...,n 4+ 1}. So, one can construct a mapping ¢ from {1,...,n + 1} to
{v1,..., 041}, preserving partitions and, by extension, being an automorphism
of the complex. |

One can check that if K is a n-dimensional simplicial complex of type {3,4},
such that I(F') = 3 for each of (n — 2)-faces F', contained in a fixed (n — 1)-face,
then K is the boundary of the (n + 1)-simplex.

THEOREM 2.3: Every simplicial complex of type {3,4} is spherical.

Proof: T ake the partition{1},...,{n+ 1} of Vj,11; the corresponding complex
is hyperoctahedron, which is, of course, spherical. T alk now a complex K(P)
of type {3,4}. By merging vertices i’ and j', belonging to the same part, we
preserv ethe sphericity. F urthermore, while doing this operation, w edo not
obtain a pair of different faces having the same set of vertices. So the obtained

simplicial complexes are necessarily spherical. |

PROPOSITION 2.4: The skeleton of the simplicial n-complex IC(P) of type{3,4}
is Kpq14¢ — hKs, where t is the number of sets of the partition and h is the
number of singletons in the partition.

Proof: In the (n + 1)-hyperoctahedron, a point 4 is notadjacen t only 6 the
point i’. If i’ belongs to a partition of size bigger than 1, then an edge appears;
otherwise, there is no such edge. ]
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In particular, K,,; and Ky, — nKs are the skeletons of, respectively, an
n-simplex and an n-hyperoctahedron.

THEOREM 2.5: Every simplicial polytope of the form K(P) with P =
(Py,...,P) is isomorphic to the dual of the product complex A; X --- x A
with Ay being the simplex of dimension |Py|.

Proof: Let us denote K = Ay x -+ x Ay; by Corollary 2.2, it suffices to prove
that the dual complex K* is of type {3,4} and that its characteristic partition
is P.

We will argue in dual terms; fix a vertex 1; € A; and hence a vertex v =

Take F' a 2-dimensional face of I, which contains v; the vertex v is adjacent to
two vertices v1 and v, contained in F'. Denote by z; the coordinates of v;, which
differ from v. If 1y = x4, then vy is adjacent to vy and so F' has three vertices.
If 21 # x9, then F contains the vertex v' = (11,...,(v1)zys- -, (V2)zgy---, 11),
where (v;),, denotes the z;-th coordinate of v;. So F' contains the four vertices
v, v, v', v1, which form a square. Therefore, £* is of type {3,4}.

On the other hand, the above computation proves that * is isomorphic to
K(P). |

PROPOSITION 2.6: Every simplicial complex K of type {3, 4} admits a polytopal
realization, such that its group of isometries coincides with its group Aut(K) of
combinatorial isometries.

Proof: By Theorem 2.1, one can assume that £ = IC(P). This result follows
immediately from the product decomposition given in Theorem 2.5. |

Note that, in general, this group of isometries is a subgroup of Aut(K). The
abo veproposition is an analog of Mani’s theorem ([Ma71]) for 3-connected
planar graphs.

PROPOSITION 2.7: Take a partition P = (Py,...,P;) of Vy11; the order of
Aut(K(P)) is
{I— e IR

where nj, = |Py| + 1 and m,, is the number of parts of size u.

Proof:  'We use again the decomposition given in Theorem 2.5. The symmetry
group of the n-simplex has size (n + 1)!, which yields the first term of the
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product. The second term comes from a possible interchange of elements, if
sizes of components are equal. |

Given a simplicial complex K of type {3,4} and an n-face A = {1,...,n+1}
of K, define g; to be the “reflection” along the (n — 1)-face V41 — {i} (i.e., the
unique non-trivial automorphism preserving this face). The group, generated
by all g;, is independent on the n-face A (because of Proposition 2.8 (iv) below);

we will denote it by Ref(K).

PROPOSITION 2.8: Given a simplicial complex K = K(P) of type {3,4}, the
group Ref(K) has the following properties:
(i) Ref(K) is a Coxeter group isomorphic to IT% _, Sym(ny,) with ny = |Py|+1.
(ii) The generators g; satisfy the relations

g =1, (gg;)* =1 ifi' #j',
(gig;)* =1 ifi' =j'.

But they do not form a simple system (in terms of [Hu90]) if one has ny, > 4 for
some k.

(iii) Ref(K) is equal to Aut(K) if and only if all parts of the partition have
different size (this case includes the simplex and the bipyramid on a simplex).

(iv) Ref(K) is transitive on n-faces.

(v) The fundamental domain of Ref(K) is a face if and only if K is the (n+1)-
hyperoctahedron (i.e., the action of Ref(K) is regular on the n-faces). If the
complex K is different from the (n + 1)-hyperoctahedron, then the stabilizer
of an n-face in Ref(K) is non-trivial. In general, the fundamental domain of
Ref(K) is a simplex with angles 7 /q for ¢ = 2 or 3.

Clearly, if K is the boundary of the (n + 1)-simplex, then Ref(K) is the
irreducible group A,. For all other simplicial complexes of type {3,4}, this
group is a reducible Coxeter group.

The first case, when Aut(K) is not generated by “reflections” g;, appears for
the complex K({1,2},{3,4}). In general, if Aut(K) of a complex of type {3,4}
is generated by “reflections”, then it is a Coxeter group.

PROPOSITION 2.9: If K and K’ are t w o simplicial complexes of gpe {3,4}, such
that Ref(K) is isomorphic to Ref(K'), then K and K' are isomorphic.

Proof:  We express K (respectively, K') as K(P) (respectively, K(P')) and
denote by m,, (respectively, by m!,) the number of parts in P (respectively, P')

of size u.
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The group Ref(K) is isomorphic to (Sym(2))™* x (Sym(3))™2 x - - -. The group
Ay, is simple if £ > 5; its multiplicit yin the Jordan—-Holder decomposition of
Ref(K) is my_1. So one has my = mj, if k > 4. The multiplicities of the cyclic
group Cy (respectively,C3) in the decomposition of Ref(K) is my + ma + 3ms +
> p>qa Mk (vespectively, ma + mg). One has trivially n +1 = >, kmy. So by
solvgng the linear system, one obtains my; = m), if £k > 1. |

A polytope is called regular-faced if all its n-faces are regular polytopes.

PROPOSITION 2.10: Amongst simplicial complexes of type {3,4}, the only ones
admitting regular-faced polytopal realization are tw o regular ones (the boundary
of a simplex and a hyperoctahedron) and the boundary of a bipyramid over a

simplex.

Proof:  First, w erecall that an ysimplicial complex of type {3,4} admits a
polytopal realization as a convex polytope. All regular-faced polyhedra are
known. All 92 3-dimensional ones are classified in [Joh66]. All ones of higher
dimension are classified in [BIBI80], [BIBI91] and references 1, 2 therein.

Besides tw o infinite families (a yramid over a h yperoctahedron and a bipra-
mid over a simplex), the list of regular-faced, but not regular, polytopes given
in [BIBI91] contains only polytopes in dimension 4. For dimensions 3 and 4, it
is easy to check the above proposition. |

The following remark, suggested by an anonymous referee, corrects an earlier

conjecture of us:

Remark 2.11: 1In h yperbolic 4-space, there is a regular tessellation ly regular
4-simplices, in which the vertex-figures (vertex links) are a regular 600-cell (see
[Vin86]). Then it follows from Corollary 4C5 of [MuSe02] that there are infinitely
many abstract simplicial 4-complexes of type {5}.

Hence, there is also an infinite number of 4-complexes of type {3,4,5}. How-
ever, if n = 2, then, clearly, one obtains only 11 2-complexes on the sphere and
3 2-complexes on the projective plane.

The finiteness of the number of 3-complexes of type {3,4,5} is expected.
However, we have no proof of it and did not do a computer emumeration, since
the number of possibilities is too big.

In [Ha00], the n-complexes of type {5} are considered; the author found 2
(respectively, 11) complexes of dimension 2 (respectively, 3).

In T ablel, w egive details for simplicial complexes of type {3,4} of small
dimension. In this Table we mark by * the cases where the group is not Coxeter.
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The orbits of vertices are computed with respect to the group Aut(K).

Two different simplicial complexes of type {3,4} with the same skeleton ap-
pear, starting from dimension 5: K({1,2},{3,4,5,6}) and K({1,2,3}, {4,5,6})
both have skeleton Ky.

P artition P with Skeleton # n- || |Aut(K)| | # orb. || |Ref(K)]
K =K(P) G(K) faces vert.
1,2,3) K, 1 21 1 24
{1}.{2,3} Ks—Ky | 6 12 2 12
{1}, {2}, {3} Ks—3K, | 8 48 1 8
11,2,3.4) K5 5 120 1 120
{1}.{2,3,4} Ke—Ko | 8 48 2 48
{1,2},{3,4} Ks 9 72" 1 36
{1}, {2}. {3, 4} Ky — 2K, | 12 48 ) 24
{1}, {2}, {3}, {4} Ky — 4K, 16 384 1 16
{1,2.3,4,5) Ko 6 720 1 720
{1},{2,3,4,5} K:— Ky | 10 240 2 240
{1,2},{3,4,5) K 12 144 2 144
{1},{2},{3.4,5) || Ks—2K, | 16 192 2 96
{1},{2,3},{4,5} Ks— Ko | 18 144* 2 72
(13,42}, {3}.{4,5} || Ko —3K, | 24 288 2 48
(11,42}, {3}, {4}, {5} || K10 —5K> | 32 3840 1 32

Table 1. All simplicial complexes K of type {3,4} of dimension at most 4

Remark 2.12: The simplicial complex K({1,2},{3,4}) has the following prop-
erties:

(i) Tt cannot be realized as a convex polytope in R*, in such a way that each
of its 3-faces is regular tetrahedron. But this complex admits such embedding
in R%. Moreover, it embeds into a 5-simplex: in fact, into the simplicial complex
formed by all 3-dimensional faces of the 5-simplex (apropos, the above simplicial
complex is not a pseudomanifold).

(ii) It pro vides an example, that the theorem of Alexandror ([A150]) does not
admits an analog in dimension 3:

An abstract n-dimensional Euclidean simplicial complex is formed of simplexes
and distances betw een v erticesIf an abstract simplicial complex is realized as
the complex formed by a set of points on the boundary of a polytope (i.e., a
boundary complex), then it is homeomorphic to an n-sphere and the sum of
angles at every vertex is low er thanor equal to the total angle of a sphere of
dimension n — 1 (i.e., it has non-negative curvature).
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Alexandrov’s theorem ([Al50]) asserts that any abstract Euclidean simplicial
complex of dimension 2, which is homeomorphic to a 2-sphere and has non-
negative curvature, can be realized in R® as a boundary complex.

The complex K({1,2},{3,4}) has 6 vertices. Let us give equal distances to all
edges, i.e., assume that all 3-faces are regular simplexes. It is easy to see that
the obtained complex has non-negative curvature. It can be realized in R® by
the regular 5-simplex. All 4-dimensional polytopes, whose 3-faces are regular

3-simplexes, ha vebeen classified in [BIBI80] (see, more generally, Proposition
2.10) and K({1,2},{3,4}) is not one of them.

3. Cubical complexes

An n-dimensional cubical complex is a lattice, whose n-faces are combinatorial
hypercubes. So all its proper faces are combinatorial hypercubes too.

We are interested, especially, in cubical complexes of type {3,4}.

The hypercubes are only cubical complexes such that any (n — 2)-face belongs
exactly to three n-faces.

The star of a vertex in a given complex is the subcomplex formed by all faces
which are incident to a given vertex. The star of any vertex of a cubical complex
of type {3,4} is a simplicial complex of type {3, 4}; so the classification of such
complexes in Corollary 2.2 characterizes them also, but only locally.

ProrosiTioN 3.1: Let K be a cubical complex, such that the link of every
(n — 2)-face has size 4; then K is non-spherical and, moreover:

(i) if K is simply-connected, then it is the cubical lattice Z™;

(ii) otherwise, K can be obtained as a quotient of Z"™ by a torsion-free (i.e.,
without fixed points) subgroup of the symmetry group of Z" (i.e., the semidirect
product of the Coxeter group B,, and the group of translations).

Proof: 1If K is a cubical complex whose (n — 2)-faces are contained in exactly
four n-faces, then the star of any vertex is (n — 1)-hyperoctahedron; so one has a
unique way to extend it locally to a cubical complex. The simple-connectedness
ensures that this construction will not repeat itself. Therefore, one gets the
cubical lattice.

If K is a cubical complex, then its universal co er is the cubical lattice Z".
So K is obtained as the quotient of Z” by a torsion-free subgroup of Aut(Z").
The sphere is simply-connected; so it cannot be obtained as a proper quotient.
|
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Proposition 3.1(ii) gives, for example, a cubical complex of type {4} on the
torus and Klein bottle.

Prominent examples (amongst ones given by Proposition 3.1) are regular
toroids classified in Sections 6D, 6E of [MuSe02].

A 2-dimensional cubical complex is called quadrillage. The polytopal
quadrillages of type {3,4} are exactly dual octahedrites, studied in [DeSt02]
and [DDS03], i.e., finite quadrangulations, such that eac hartex has valency 3
or 4. So the number of such complexes is not finite already in dimension two.
All dual octahedrites, which are isohedral, are: Cube, dual Cuboctahedron and
dual Rhombicuboctahedron.

Definition 3.2: Let K be a cubical complex; define a zone as a circuit of (n—1)-
faces of K, where any tw o consecutie elements are opposite (n — 1)-faces of an
n-face.

The notion of zone corresponds, in the case of octahedrites, to the notion of
central circuits (see [DeSt02] and [DDS03]).

4. Embeddability of sk eletons of complexes in lypercubes

1267 2346 1246
2367 1456 1357
3467 1237 1234
4567 3457 1345
0167

The set of 3-faces of the simplicial
complex K

Figure 1. Embeddable triangulation IC with skeleton K7 — Ky and
non-isometric link C5 = (1,2, 3,4,5) of the edge (6,7).

THEOREM 4.1: Let K be a closed simplicial complex of dimension n > 3. Then
one has:

(i) the skeleton of K is not embeddable, if K has an (n — 2)-face belonging
to at least five n-simplexes and such that its link is an isometric cycle in the
skeleton;
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(ii) the skeleton of K is embeddable if K is of type {3,4}.

Proof: 1If there exists an (n—2)-face, such that its link has size at least six, then
the sk eletonk is not 5-gonal, since it contains the isometric subgraph K5 — Kj.
If an (n — 1)-face has a link of size five, then the skeleton of K contains the
isometric subgraph K; — Cj, which is not embeddable.

All skeletons of simplicial complexes of type {3,4} are of the form K,, — hK>
and hence ([DeLa97], Chapter 7.4) embeddable. |

Go Gl

.

Ga
Figure 2. The graphs G; (embeddable into (¢ + 3)-hypercubes) for t =0, 1, 2.

For example, Theorem 4.1(i) implies non-embeddability of the following 3-
dimensional simplicial complexes:

(a) a regular 4-polytope 600-cell, since the link of each of its edges is an
isometric Cs;

(b) the skeleton of Delaunay partition of the body-centered cubic lattice
(denoted also A3), since the link of some edges is an isometric Cg (this skeleton
is, moreover, not 5-gonal).
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The condition of isometricity of the link in Theorem 4.1 is necessary (it was
missed in [DSt98]). F or example, there exists anembeddable 3-dimensional sim-
plicial complex having an edge which belongs to five tetrahedra; its skeleton is
K7 — K3 (see Figure 1). The same graph K; — K5 appears also as the skeleton
of a n-dimensional simplicial complex of type {3,4}, but only for n = 4.

COROLLARY 4.2: The skeleton of a finite cubical complex is embeddable (more-
over, with scalel) if and only if its path-metric satisfies the 5-gonal inequalities.

Proof: Clearly, such sleletons are bipartite graphs, and so the embeddability
of the skeleton implies that it is an isometric subgraph of some hypercube or, if
infinite, of some cubic lattice Z™. The result then follows from the characteriza-
tion of isometric subgraphs of hypercubes, obtained in [Djo73] and reformulated
in [Av81]. |

On embeddings of quadrillages (i.e., cubical complexes of dimension two),

/S S

we can say more.

Figure 3. Two non-embeddable quadrillages with simple zones.

One can check that any plane bipartite graph (i.e., all face-sizes are even) is
an isometric subgraph of a hypercube if and only if all zones are simple (i.e.,
have no self-intersection) and each of them is convex (i.e., any two of its vertices
are connected by a shortest path belonging to the zone). So the skeleton of a
quadrillage is embeddable if and only if its zones are convex (and hence simple).



Vol. 144, 2004 SIMPLICIAL AND CUBICAL COMPLEXES WITH SHORT LINKS 123

All known embeddable polyhedral quadrillages (i.e., dual octahedrites, which
are isometric subgraphs of hypercubes) are zonohedra: dual Cuboctahedron
and the family G; (for any integer ¢t > 0), illustrated in Figure 2 for the cases
t =0,1,2. Graphs G; are embeddable in (¢ 4+ 3)-hypercubes.

The simplicity of all zones is a necessary condition for topological embedding
of a quadrillage in a cubical lattice Z™, but it is not sufficient even in the
spherical case (see Figure 3). But a quadrillage, such that its skeleton is an
isometric subgraph of a hypercube, is topologically embeddable in a cubical
lattice.

ACKNOWLEDGEMENT: We are grateful to an anonymous referee for calling our
atten tion to reference [Ha00] and the fact that it comains a counter-example of

our earlier conjecture.
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